

S205 The molecular world S343 Inorganic chemistry S344 Organic chemistry: a synthesis approach

Making molecular models with the Orbit model kit

1 Introduction

Included in your first S205 Course mailing you will find an Orbit (molecular) model kit. The model kit will be useful throughout your study of each of the courses S205, S343 and S344 and the associated residential schools, SXR205, SXR343 and SXR344. With the kit you will be able to construct models of most of the structures discussed in each course. It would therefore be useful to have the kit to hand during all your study periods.

2 Notes on the model kit

The model kit contains two types of component: atom centres, which are small plastic spheres or cylinders with prongs (arms), and coloured plastic straws (mainly grey) to represent bonds. Each of the eight types of atom centre can represent a number of different atoms, and they are colour-coded, as indicated in Table 1

2.1 Bonds

The grey straws are for constructing standard covalent bonds between atoms. They simply push onto the arms on the atom centres to form bonds. If this is difficult when the straws are new, moisten the ends of the arms.

A covalent bond between two atoms is represented by a grey straw with two appropriately coloured atom centres, one at each end. Molecular models are constructed by joining the appropriate centres together in the order indicated by their structural formula; examples of how to construct particular molecular models are given in Table 2. When making molecular models, always bear in mind that a properly constructed molecule should have no 'free' 'prongs.

To construct multiple bonds, use the white bonding pegs. Double bonds, for instance, can be made by inserting two such pegs into the two atom centres at either end of the bond, and connecting them by a straw.

Straws of four different lengths are provided. The most convenient scale for bond lengths is $2\,\mathrm{cm}\equiv100\,\mathrm{pm}$ ($10^{-10}\,\mathrm{m}$ or $1\,\mathrm{A}$). Using this scale, the pre-cut straws that are $3\,\mathrm{cm}$ long are used for C-C single bonds (ca. $154\,\mathrm{pm}$), bonds between second-row elements, or between hydrogen and third-row elements. Those that are $2.5\,\mathrm{cm}$ long correspond to C=O double bonds (ca. $125\,\mathrm{pm}$), or bonds between hydrogen and the second-row elements. Those that are $2.5\,\mathrm{cm}$ long correspond to C-D double bonds (ca. $125\,\mathrm{pm}$), or bonds between hydrogen and the second-row elements. Those that are $2\,\mathrm{cm}$ long correspond to C-H bonds (ca. $107\,\mathrm{pm}$). The $5\,\mathrm{cm}$ straws should be used for longer bonds such as C-C1, C-Br, etc. However, you will probably be using the $5\,\mathrm{cm}$ straws most of the time, especially when you only need to show the stereochemistry of molecules.

Provided the ratio of bond lengths within your model is roughly accurate, any combination of the lengths provided can be used.

The flexible white tubes are specifically for constructing strained systems or bonds of a non-standard shape; for example, the 'banana' bonds of cyclopropane rings, and bidentate ligands.

Table 1 Contents of the molecular model kit

Atom centre type	Colour	Element
one-coordinate	white	hydrogen atom, -H
Daniel and bear stars	blue	nitrile nitrogen, ≡N
0	red	carbonyl oxygen, =O
	yellow	doubly bonded sulfur, =S
	light green	fluorine atom, -F
	green	chlorine atom, -Cl
	dark-green	bromine atom, -Br
	very dark green	iodine atom. —I
two-coordinate (linear)	white	hydrogen bond, —H
	black	alkyne carbon, ≡C−
0	black	allene carbon, =C=
	blue	half-azo nitrogen, -N=
two-coordinate (100°)	yellow	saturated divalent sulfur, -S-
	in Orbit kil	O come the control of
two-coordinate (120°)	red	saturated oxygen atom, -O-
trigonal (120°)	black	planar carbon (alkene or aromatic), $=c'$
1		the 1919 I have been been been been been been been be
200	blue	planar nitrogen, =N
ton with the second ries	red	planar oxygen, =O
tetrahedral	black	saturated carbon
1	blue	positively charged nitrogen, or R ₃ N showing non-bonded electron pair
ale .	red	four-coordinate oxygen, R ₂ O showing two non-bonded electron pairs
	yellow	sulfur (e.g. RSO ₃ H or RSH, showing non-bonded electron pair)
	purple	four-coordinate phosphorus (e.g. R ₃ P=O)
	silver	tetrahedral metal atom; also use for three-coordinate and lone-pair, or two-coordinate and two lone-pairs
trigonal bipyramidal	purple	five-coordinate nitrogen, five-coordinate oxygen, five-coordinate phosphorus; also use for four-coordinate and lone-pair, or three-coordinate and two lone-pairs

octahedral	black	octahedral
Λ	red	octahedral
SK	yellow	octahedral sulfur
-l-	green	octahedral halogen
	silver	octahedral metal; also use for five-coordinate plus lone-pair, and for four-coordinate and two lone-pairs
orbital shape	black and white	orbital lobes for p orbitals (π-bonding and for lone-pairs)
planar double atom	black	for alkenes

Table 2 How to construct various molecular models with the Orbit kit

Molecule	Molecular formula	Structural formula	Kit parts	Advice
hydrogen	H ₂	н–н	2 H centres	Attach an H centre to either end of the
			1 grey straw	straw.
chlorine	Cl ₂	CI-CI	2 Cl centres	Similar to above.
			1 grey straw	
oxygen	O ₂	0=0	2 O centres	Similar to above, but use a flexible white
		we of love different.)	2 white tubes	tube. Join the remaining free prongs on each O centre with the second flexible white tube.
nitrogen	N ₂	N≡N	2 N centres	Similar to O2 above, but use the three
			3 white tubes	flexible tubes to join the two N centres together.
water	H ₂ O	H ^O H	2 H centres	Use one grey straw to join one H centre
			1 O centre or tetrahedral centre	to a prong on the O centre. Use another grey straw to join the second H centre in the second prong on the O centre. The model should be V-shaped. If using a tetrahedral centre, attach two lone-pairs
			2 grey straws	
methane	CH ₄	H	4 H centres	Attach a grey straw to each of the four
		н-с-н	1 C centre	prongs on the C centre. Attach an H centre to the free end of each straw.
		H	4 grey straws	centre to the free end of each straw.
fluoromethane	CH ₃ F	H	3 H centres	As for methane, but replace one H centre with an F centre.
		н-с-ғ	1 F centre	
		H	1 C centre	
			4 grev straws	

Molecule	Molecular formula	Structural formula	Kit parts	Advice
ethane	C ₂ H ₆	H H H-C-C-H I I H H	6 H centres 2 C centres 7 grey straws	Join the C centres together with a grey straw. Attach grey straws to the remaining six prongs. Attach H centres to the free ends of the six grey straws.
ettlette	C ₂ H ₄	H H	4 H centres 2 C centres 4 grey straws 2 white tubes or use the planar double atom centre	Join the C centres together with two flexible white tubes. Attach grey straws to the remaining four prongs (two on each C centre). Attach H centres to the free ends of the four grey straws.
ethanol	CH₃CH₂OH	H H H-C-C-O-H I I H H	6 H centres 2 C centres 1 O centre 8 grey straws	As for ethane, but replace one H centre with an O centre. Attach a grey straw with an H centre to the free prong on th O centre.
ethanoic acid	СН ₃ СООН	H O-H	4 H centres 2 C centres 2 O centres 6 grey straws 2 white tubes	As for ethanol, but replace the two H centres connected to the C centre attached to the O—H group with a single O centre. This new C=O double bond should be constructed using two flexible white tubes.
methylamine	CH ₃ NH ₂	H H H	5 H centres 1 C centre 1 N centre 6 grey straws	As for methane, but replace one H centre with an N centre. Attach two grey straws each with an H centre to the two free prongs on the N.
benzene	C ₆ H ₆	H C C C H H C C C H H	6 H centres 6 C centres 9 grey straws 6 white tubes or use 6 trigonal bi-pyramidal centres and 6 p orbitals. or 3 planar double-atom centres	Join the six C centres together in a hexagonal ring, using grey straws (three) and flexible white tubes (three) alternately. Make three alternate double bonds by further joining each of the C centre 'white bonded' pairs with another white tube. This should leave each C centre with a single free prong, to which you should attach a grey straw with an H centre. Using the trigonal bipyramids enables the p-orbitals to be attached.
difluoro selenium oxide	F ₂ SeO	F Se=O F	2 F centres 1 O centre (4 prong) 1 Se centre (blue) 3 grey straws	Attach the three grey straws to the tetrahedral Se centre, and add the two F and O centres to the ends of each straw. Attach an orbital shape to the remaining prong to represent a non-bonded pair of electrons on selenium. Note that the Se is joined to O by a double bond, in contrast to the two Se-P single bonds.

Molecule	Molecular formula	Structural formula	Kit parts	Advice
silicate ion SiO ₄ ⁴⁻	SiO ₄ ⁴ -		4 O centres (4 prong)	Attach the four grey straws to the tetrahedral Si centre, and add the four
			1 Si centre (silver)	tetrahedral O centres to the ends of each straw.
			4 grey straws	Note As this is a complex ion, a tetrahedral O centre is used, two of the prongs on which represent normal non-bonded electron pairs on the oxygen whi the remaining prong 'accommodates' the four electrons that give the complex ion icharge of 4
boric acid	H ₃ BO ₃	н_о	1 B centre (blue)	Attach three of the grey straws to the trigonal B centre. Attach a grey straw to
		B	3 O centres	each of the O centres, and add the three H
		О О—Н Н	3 H centres 6 grey straws	centres to the ends of each straw. Add the three O-H groups to the grey straws connected to the B centre.
ethylene-	H ₂ N(CH ₂) ₂ NH ₂ H H H H N C C C N H H H H H H H H H H H	н н н	2 C centres	Join the two tetrahedral C centres using a
diamine		N-C-C-N H H H H	2 N centres (4 prong) 8 H centres 11 grey straws	grey straw. Attach six grey straws to the remaining prongs. Attach two grey straws to each tetrahedral N centre (one of the remaining prongs represents the non-bonded electron pair on each nitrogen),
			esolid & Kill seri	onded election pair of each of the grey and add an H centre to each of the grey straws on each N centre. Attach each NI to each one of the C centres, and add the four remaining H centres to complete th methylene group for each C centre.
diammine- diaquodicyano		CN _,CN H ₂ O-M-NH ₃ H ₂ O-NH ₃	2 C centres (2 prong)	Attach each short grey straw to each lin C centre, and add a two-prong N centre
M(II)			2 N centres (4 prong)	each straw; this is a simplified form of the CN ligand with a non-bonded pair of
			2 N centres (2 prong)	electrons on the nitrogen represented by the unconnected prong. Attach four grey straws to each tetrahedral N centre, and
			10 H centres	add three H centres to each to produce two
			2 O centres (4 prong)	NH ₃ ligands. Attach two grey straws to each tetrahedral O centre, and add two H
			1 M centre (6 prong, silver)	centres to each to produce two H ₂ O ligands (the additional prong on each O centre represents a non-bonding electron
			16 grey straws (standard)	pair). Attach the remaining six grey stra to the octahedral M centre, and comple the model by attaching all the ligands
			2 grey straws (short)	prepared above.

Molecule	Molecular formula	Structural formula	Kit parts	Advice
diaquobis- (1,2-di- aminoethane)- rhodium(0)		en en H ₂ O OH ₂	4 N centres (4 prong) 4 C centres 2 O centres (4 prong) 20 H centres 1 Rh centre (black) 32 grey straws or 2 flexible white straws	Construct two models of the ethylenediamine (en) ligand, using a similar procedure to that employed for ethylenediamine above. Construct two H ₂ O ligands. Attach six grey straws to the octahedral Rh centre. Complete the model by attaching the four ligands to the Rh centre. Alternatively use a flexible white straw to represent en.