Springtime in the North Sea
by René van Wezel, The Netherlands
Who
thinks the ocean is such a big and wide space without big changes is
wrong. Every season shows its own biodiversity, species come and
species go. And every year we’re eagerly awaiting the
springtime, in our garden and in our water samples.
Coastal
areas show the seasonal influence rapidly. Upwelling of nutrients and
a little heat from the sun make these areas nice hunting grounds for
the microscopist. And though the water might still be cold, spring is
definitely on its way. You can even see things happening from the air
where satellites are monitoring the ‘greenness’ of the
sea continually (www.marcoast.waterinsight.nl).
We’ve watched a large bloom passing along the Dutch coast these
last couple of weeks, eagerly awaiting the first live samples that
will show us what exactly is happening. And yes, last weeks sample
from the Wadden Sea (north of The Netherlands), showed us finally
what we already expected: springtime has started early this year!
Not
surprisingly, the tiny algal flagellate Phaeocystis shows up
massively. As a swarmer, it has two flagella and a short little hair
in between. This hair is quite different in structure from the
flagella, and is called a haptonema. It is thought to be involved in
food gathering, and all algae that have this structure belong to the
class of haptophytes. Nevertheless, it is quite rudimentary in
Phaeocystis and I doubt whether it is functioning as such in
this species.
Phaeocystis
sheds its flagella easily and then starts secreting a jelly like
substance. Massive colonies of cells in mucilage are floating through
the water, often washing ashore in huge foaming waves, hence the
Dutch name of Schuimalg (Foam algae) for this nuisance organism.
Eventually, all other life risks a complete covering by these sticky colonies of Phaeocystis, like this strand of centric diatoms (probably Thalassiosira nordenskioeldii), and the spiny chainforming Chaetoceros decipiens in the next picture. You can actually see a couple of nice examples of small Phaeocystis colonies forming, consisting of a couple of cells in an envelope of mucilage. Another chainforming diatom that is pretty much there the whole year round is Cerataulina pelagica that typically shows rings of droplets around the top and bottom of the cylindrical cells. Also typical for this species are the two connection points between the cells that link them together. This is actually a good determination characteristic that is best seen at the end of the chains. One of the nicest occurring centric diatoms in our coastal waters is Actinocyclus octonarius, a very beautiful solitary species which shows a dotted line pattern around the edge when focussing on the middle of the diatom. Also the pore (areolae) pattern on the valvar surface is characteristic for this species.
As a colourless cell, this species needs to gather its own food, by dragging the prey between the plates of the armour into its cell lumen. The prey can actually be as big as they are themselves. There it will be digested in food vesicles like the brown blobs in the upper picture. To actually get hold of the prey, it has some remarkably specialized structures called nematocysts. These tiny harpoon-like structures are generally lying along the surface of the cell. After they are fired off, they are hauled in like whalers’ harpoons, dragging the prey within the dinoflagellate.
Technicalities Author is working at an ecological research and consultancy company (www.koemanenbijkerk.nl) in the north of The Netherlands. Preserved seawater samples for the Dutch phytoplankton monitoring program are taken by the Directorate-General for Public Works and Water Management, and analysed in our laboratory. Also live samples are taken on a regular basis, which gives an indication of the biodiversity, and we’re closely watching for any toxic or nuisance algae that show up. As live samples can be in transport for several days before analysis, this can only considered to be semi-quantitative, and an example of the report for this sample can be found here. Analysis is carried out on inverted microscopes at 200x with the sample in so-called sedimentation cuvettes with a volume of around 1 ml. Images were taken with 20/0.7 and 60/1.4 lenses in brightfield. Thanks to Bert Wetsteyn (DG for Public Works and Water Management) for friendly permission of the use of analysis results and helpful comments.All comments to the author René van Wezel are welcomed. |
Please report any Web problems or offer general comments to the Micscape Editor.
Micscape is the
on-line monthly magazine of the Microscopy UK
web
site at
Microscopy-UK